DSN Progress Report 42-54

September and October 1979

A Computer-Aided Design System for Custom Large-Scale
Integrated Circuits

M. W. Sievers

Communications Systems Research Section

This paper describes a computer-aided design system for custom large-scale integrated
circuits. The system is composed of a high-level descriptive language and a SIMULA based
language interpreter. The interpreter is running on the Caltech DEC SYSTEM 20 compu-
ter. It has been used to design a 16-bit self-checking comparator of medium-scale integra-

tion proportions.

l. Introduction

A general logic structure (GLS) for the design of custom
integrated circuits has been discussed previously (Ref. 1). This
is a matrixlike structure into which logic and wiring can be
mapped. The simple and regular nature of the structure leads
to a straightforward descriptive language and interpreter.

The descriptive language is based on the concept of a cell. A
cell is a bounded region that may contain other cells, gates,
and networks. This basis is amenable with structured, hierar-
chical design.

The function of the interpreter is to examine the design
description and construct the cell “object” structures. Pre-
sently, it is possible to request cells to draw themselves either
in a high-level notation consistent with the descriptive lan-
guage or in the low-level detail required for mask making con-
sistent with Caltech’s NMOS design rules (Ref. 2).

Certain functions such as memory, pad drivers, and input
protection diodes are best not constructed within the GLS
structure. The facility for using such cells is not yet part of
the design language. What is needed is to define cells whose

input, output, and power wires are compatible with the GLS
structure. Future versions of the language and interpreter will
make use of these cells.

Several other modifications and additions are planned to
increase the power of the design system. These will be men-
tioned in a later section. The design system is in its infancy
at this time and is expected to grow in its capabilities.

The choice of SIMULA for the implementation of the
interpreter will ease the work of making program changes.
SIMULA is similar to many other block structured languages
but has at least one significant dissimilarity. SIMULA is an
object oriented language rather than data oriented language.

In SIMULA an object, called a CLASS, is defined that has
various attributes associated with it. These attributes might
be constants, variables, arrays, and procedures. Making inter-
preter changes requires the addition, deletion, or replace-
ment of various CLASS attributes. Generally, these changes
can be made within one CLASS without affecting other
CLASSes. This is because each CLASS can be a totally self-
contained object with little or no need for interaction with
other CLASSes.

51

As already mentioned, SIMULA is an object oriented
language. Section III will very briefly examine some of its
more salient characteristics. Since data per se is not defined
in SIMULA it is more meaningful to discuss object structures
than data structures. The object structure created by the inter-
preter is specified in Section IV. Section V presents the
descriptive language constructs and constraints. Section VI
illustrates a typical design using the descriptive language. The
next section introduces the high level GLS description upon
which the design system is based.

ll. High-Level GLS Notation

The GLS can be represented as a collection of unit gates
interleaved with signal wires as indicated in Fig. 1. Each unit
gate is represented by a rectangle. Signal wires are drawn as
vertical lines.

A unit gate has two functions. It may be used either to
create a NOR gate or as a wiring channel. The basic gate is a
four port device in which any port may be programmed for
either input or output. The ports are arranged two on each
side of the gate. Unit gates may be coalesced into larger gates
or wires. Only integral numbers of gates are defined, however.
No problem occurs if gates cross power wires.

The unit gate defines the basic vertical unit of measure. For
example, power wires are located on unit gate boundaries and
pull-up resistors needed in the NMOS implementation are one
unit gate long. Additionally, ground wires are assumed to be
present at each unit gate boundary, unless certain conditions
exist which are mentioned in Section V.

Signal wires adjacent to each unit gate column may be used
to carry either power or signals vertically through the struc-
ture. These wires may be cut into arbitrary sizes as suit the
design implementation. Signal wires exist for carrying signals
horizontally but are omitted in Fig. 1 to reduce the clutter.

Figure 2 shows a static gated D flip-flop constructed in the
high level notation. Flip-flop inputs and outputs are carried
on horizontal wires. Arrows pointing into gates are input terms.
Gates outputs are indicated by dots inside the gate. Dots at
the intersection of vertical and horizontal wires indicate con-
nection. Wide horizontal lines indicate a power bus and
thinner vertical lines running from gates to a power bus repre-
sent a combination of pull-up and power connection.

Ground wires are not explicitly shown in Fig. 2 for reasons
already mentioned. However, it may become necessary to
periodically tie ground wires to a ground bus in larger designs.
A facility exists for doing this (see Table 6 in section V).

52

Two constraints on designing with the GLS occur that may
not be obvious from Fig. 2. The first is that all gates must
start on odd numbered columns although wires may be placed
in any column. This restriction is due to the GLS low level
implementation and is made to enforce consistent column
usage throughout a design. The second constraint requires
that no gate input be made in the same row on the right side
of a gate in column i - 1 or on the left side of a gate in column
i + 1 as a contact made in column i. This again is due to the
GLS implementation. Violating this rule would result in the
creation of gates that probably would not be capable of
successfully driving their fanout.

lil. A Brief Look at SIMULA

SIMULA is a block structured language most similar to
ALGOL. 1t is unique in that it is oriented toward objects,
called CLASSes, rather than toward data. A CLASS is an
instance prototype that consists of three major parts:

(1) Head.
(2) CLASS definition body.

(3) Initialization body.

The head part names the CLASS, defines parameters needed
to create instances of it, and establishes it within a hierarchical
CLASS structure. The CLASS definition body is the set of
constants, variables, and procedures that make up the CLASS.
Procedures are not executed unless called. The initialization
body is a special procedure that is executed upon the creation
of each CLASS instance.

CLASS instances are created by the construct
NEW classname (parms);
where classname is the name of an existing CLASS and parms
are the parameters required by that CLASS. Reference vari-
ables may be declared which are used as pointers to CLASS

instances. Thus if a and b are declared as reference pointers to
CLASS c then after execution of the segment

a: — New c (parms);
b: — New ¢ (parms);
two instances of CLASS c exist with a pointing to one and b

the other. Instances remain accessible until all of their refer-
ence pointers have been destroyed. If

a: — b: — New ¢ (parms);

the single instance of object ¢ created remains until both a and
b no longer point to it.

Each instance created effectively has a full copy of all
attributes defined by the associated CLASS. Thus procedures
within several instances of the same CLASS may be executed
in parallel without the usual concerns of program sharing. In
reality of course, only a single copy of each CLASS exists and
SIMULA maintains the required data structures for segment
sharing.

CLASSes may be made subsets of other CLASSes by pre-
fixing the CLASS head with the name of another CLASS. So
a CLASS b;
a CLASSc;
b CLASS d;

establishes the following CLASS hierarchy.

—
b c
I
d

Each sub CLASS has all of the attributes of each of its super
CLASSes. A super CLASS, however, has none of the attributes
defined within its sub CLASSes. Further, each creation of a
sub CLASS object results also in the creation of instances of
all of its super CLASSes.

Attributes of instances are always visible from within the
instance and can be visible externally unless otherwise pro-
tected. It is also possible to define virtual attributes. For
example a super CLASS s can declare a VIRTUAL PROCE-
DURE p. Sub CLASSes of s each define a PROCEDURE p.
A reference made to the virtual PROCEDURE p in s will
cause the actual procedure to be executed in the sub CLASS.
For example, if

CLASS s:
VIRTUAL: PROCEDURE p;

s CLASS b;
BEGIN

PROCEDURE p;
END;

s’

s CLASS ¢;
Begin

PROCEDURE p;
END;

then if d, and e are made CLASS s references and are assigned
instances by

d: — NEWb;
e: — NEWc;

a reference to p in the s object d will pass control to p in
object ¢. Similarly, a reference to p in s object e will pass con-
trol to p in object ¢. The advantage of this is that it is possible
to declare a CLASS as a super CLASS for many objects and to
refer to any instance of these many objects by the single super
CLASS. A reference to any virtual attribute of the super
CLASS will result in a reference to the actual attribute in the
sub CLASS that qualifies the super CLASS. The alternative to
this capability is to test each super CLASS reference to deter-
mine which of its sub CLASSes qualify it and then access the
attribute of the sub CLASS directly. Testing is slower and con-
siderably less elegant than the VIRTUAL declaration approach.

IV. Interpreter Object Structure

The high-level language interpreter is based on the object
hierarchy shown in Fig. 3. CLASS thing is an object that
basically has no attributes. It is defined within CLASS things
on top of which the interpreter is written; i.e., things is ex-
ternal to it. Object thing is defined to be a super CLASS for
all objects. CLASSes celldef, network, nodes, gaterep, and
pwrwire are all thing sub CLASSes.

Object celldef is the cell definition prototype. Its attributes
and their meaning are listed in Table 1. The network object is
defined by two nodes objects. Table 2 lists its attributes.
CLASS nodes is composed of virtual attributes only. It is
defined to be the super CLASS for all node objects. Therefore,
for example, requests generated in CLASS network procedures
to produce high- or low-level descriptions of its defining nodes
can be directed toward nodes CLASS objects. CLASS network
need not test to determine what type of node is actually pre-
sent. Virtual attributes of nodes are indicated in Table 3.

Nodes subclasses transistor, contact, gndcontact, pin, and
powercontact each contain the actual procedure definitions
declared VIRTUAL in CLASS nodes. Transistor has an addi-
tional local attribute that flags which side of the gate it is on.
This attribute is not visible at the nodes level.

The gaterep object is the gate prototype. Its attributes are
found in Table 4. Object pwrwire is the power wire definition.
Table 5 lists its attributes.

53

V. Design Language

The design language has the syntax of SIMULA and con-
tains constructs for creating cells, making instances of cells,
and preparing output files of cell descriptions. In addition to
these constructs, any legal SIMULA code may be included in a
chip description.

A chip is described as a collection of cell definition blocks.
The start of each such block is indicated by

create (cellname);

where cellname is a text string. Each time a create is executed,
the interpreter makes a new instance of celldef. Every cell
definition block is terminated by an endcreate statement. This
statement takes the cell just defined and enters it into a cell
dictionary for future reference.

The body of a cell definition block contains the constructs
that define elements within the cell. At present, a cell defini-
tion block cannot contain a create statement. This restriction
is arbitrary and could be eliminated. Table 6 lists the body
constructs.

After a cell has been defined, it may be translated into an
output file in either its high- or low-level form. High-level
output is requested by hliplot (cellname) and low-level output
by goryplot (cellname). An output file may be displayed or
translated into a mask set. It is necessary, however, to request
a goryplot for actual mask making.

Two language precautions arise due to the interpreter
implementation. These are:

(1) When cells overlap and any of these has a power wire
contained within the overlapped region, then all cells
must declare a power wire within that region. This is
necessary because each cell is responsible for drawing
its own ground wires. Ground wires are drawn across
a cell on unit gate vertical boundaries unless a power
wire or subcell is found in its path. If one declares a
power wire, that wire is not visible outside of that cell
definition. A cell sharing a common region with that
cell will insert a ground wire under the power wire
declared in the first cell since its existence is unknown.
The result could be a short from power to ground at a
pull-up resistor.

54

(2) All cells in which a gate is declared must have a suitably
located power wire declared. Again, power wires
declared outside of a cell definition are unknown within
the cell. Gates must have clear access to power wires to
which they can be connected.

In addition to these precautions, there are a few limitations
due to interpreter implementation:

(1) Nested cell definitions are not permitted.
(2) Cells may be stretched only once.

(3) No provision has been made to include cells defined
outside of the design language.

(4) Only NMOS devices can be created.

These precautions and limitations are fairly minor and do
not hinder the specification of a complete chip. Modifications
to the interpreter are planned to remove most of them.

VI. A Typical Design

The static register cell in Fig. 2 is implemented in the design
language. Figure 4 shows the language description of the regis-
ter. Figure 5 shows a black and white copy of a color plot of
the high level description produced by the code in Fig. 4.
Figure 6 shows a black and white copy of a color plot repre-
senting the mask level details of Fig. 5.

As a final example, Fig. 7 illustrates a black and white
version of a color plot showing a 16-bit self-checking compara-
tor (Ref. 3) designed by the system. The pads and drivers
were added by merging a file containing their description with
the file produced by the interpreter. This chip is part of one of
the Caltech class chip projects and will be fabricated by
November 1979.

VIl. Conclusions

A descriptive design language and interpreter are now
available for defining the logic “core’ of an integrated circuit.
Additions are planned to increase the design system capabil-
ities to include cells not created in the GLS. Further additions
might also include logical and electrical simulation of the
devices created.

(2]

References

. Sievers, M. W., ““A General Logic Structure for Custom LSI,” in The Deep Space Nei-

work Progress Report 42- 50, Jet Propulsion Laboratory, Pasadena, Calif., April 15,
1979, pp. 97-105.

. Mead, C., and Conway, L., Introduction to VLSI Systems, 1978, ch. 2., text in

preparation.

. Carter, W. C., Wadia, A. B., and Jessup, D. C., “Implementation of Checkable Acyclic

Automata by Morphic Boolean Functions,” Symposium of Computers and Automata,
Polytechnic Inst. of Brooklyn, April 1971, pp. 465-482.

55

Table 2. network attributes

Attribute

Comment

nodel, node2

Nodes objects defining the network
endpoints

Table 1. celidef attributes PROCEDURE Adds additional nodes to network
morenodes defined by nodel, node2
Attribute Comment PROCEDURE Requests nodes objects to make their
makehll high level description, draws in a
X,y Unit gate location of lower left corner connecting wire
networklist List of networks PROCEDURE Requests nodes objects to make detailed
makegore description, connects nodes objects
subcellist List of subcells with a wire and inserts crossunders as
required.
pwrlist List of power wires -
gatelist List of gates
mybox A rectangle defining the bounding box
Table 3. nodes attributes
boundingcell The next highest celldef in a hierarchical
design.]
Attribute Comment
stretched Boolean variable indicating whether or . : hilx R high-level |]
not the cell has been stretched VIRTUAL PROCEDURE hllx eturns high-level x location
from nodes sub CLASS
PROCEDURE Produces a vertically stretched copy of . . R el locati
vertstretch the cell; stretching is nonlinear in that VIRTUAL PROCEDURL hily 3 eturns “g rlevel y location
only objects above a given row number from nodes sub CLASS
are moved up ~ . .
VIRTUAL PROCEDURE gorx Returns low-level x location
PROCEDURE Produces a horizontally copy of the from nodes sub CLASS

horizstretch
PROCEDURE
squoosh
PROCEDURE

makegore

PROCEDURL
makehll

PROCEDURE bbox

cell; the nonlinear comment above
applies here to column number

Produces a cell both horizontally and
vertically stretched.

Does a recursive descent through cell
hierarchy to make detailed mask
description

Makes a high level description of the
cell; subcells are represented by their

bounding box

Computes the bounding box.

56

VIRTUAL PROCEDURE gory

VIRTUAL PROCEDURE myy

VIRTUAL PROCEDURE myx

VIRTUAL PROCEDURI makehil

VIRTUAL PROCEDURE makegore

VIRTUAL PROCEDURE xgets

VIRTUAL PROCEDURE ygets

VIRTUAL PROCEDURE copynode

Returns low-level y location
from nodes sub CLASS

Returns unit gate row num-
ber from nodes sub CLASS

Returns column number from
nodes sub CLASS

Requests nodes sub CLASS to
make its high-level description

Requests nodes sub CLASS to
make its low-level description

Replaces nodes sub CLASS
column number with passed
parameter

Replaces nodes sub CLASS
unit gate row number with
passed value

Creates a copy of the nodes
sub CLASS

Table 4. gaterep attributes

Attribute

Comment

Table 6. Interpreter constructs

Construct

Comment

size

side

PROCEDURE hllx
PROCEDURE hlly
PROCEDURE goryx
PROCEDURE gory

PROCEDURE makegore

PROCEDURE makehll

Location of bottom-most unit gate
Length in unit gates

Side, top or bottom, to which power
will be connected

Same function as listed in Table 3
as applied to gates

Makes low level details if gate,
cross-unders are inserted as neces-
sary, connects gate to pull-up and
power

Makes high level gate description,
connects gate to power.

Table 5. pwrwire attributes

Attribute Comment
X,y Row and column location of left-
most point
length Length in columns

PROCEDURE hllx
PROCEDURE hlly
PROCEDURE gorx
PROCEDURE gory
PROCEDURE makehll
PROCEDURE makegore

Same as Table 3 as applied to power
wires

plop (celiname, location);

vertput (cellname,

location, row, howmuch);

horizput (cellname,
location, col, howmuch);

vhput (cellname,
location, row, howmuchr,
col, howmuche);

gate (loc, size, side);

power (loc, length);

connect (nodel, node2)
< - morenodes (node) > ;

input (loc, row, side);

output (loc, row);

con (loc, row);

pwrcon (loc);
gndcon (loc);

io (name, loc, row);

Creates an instance of cell named cell-
name and places it at position location;
location is the row and column of the
lower left corner of the cell

Creates an instance of cell cellname at
location; all elements above row are
moved up by howmuch

Creates instance of cell cellname at
location; all elements to the right of
col are moved 2 * howmuch columns.

Does both vertical and horizontal
stretches

Creates an instance of gaterep at loca-
tion loc, size unit gates long, with
power connected to side (“‘top” or
“bottom™)

Creates an instance of a power wire
starting at loc, length columns long

Creates a network between nodes
objects nodel and node2; additional
nodes are added via morenodes

A gate input nodes object for connect,
creates a transistor instance at gate
defined at loc, at row ports from the
bottom of the gate, on side (*‘left”

or “right”)

Gate output from gate defined at loc
at row ports from the gate bottom; a

contact instance is created

Vertical to horizontal wire contact,
loc, row same as above

Connection to a power bus
Connection to ground bus

Cell input-output node, creates a pin
instance labeled name

57

..f\jw,’\qn,f_wﬂ,f\qq,
LN N J
CLOCK——T®¢
D —
— — . —
D
CLOCK
O i O T O [
Fig. 1. High-level representation of GLS matrix Fig. 2. Static gated D flip-flop
thing
celldef network nodes gaterep pwrwire
transistor contact gndcontact pin powercontact

Fig. 3. Interpreter object hierarchy

58

Ol

[}

create ("flipflop");
power (0, 0, 7);
gate (1, 1, 2, "bottom");
gate (3, 1, 2, "bottom”);
gate (5, 1, 2, "bottom");
gate (7, 1, 2, "bottom");
connect (io ("D", 0, 1, 4), input (3, 1, 4, "left"));
connect (output (3, 1, 4), input (5, 1, 4, "left"));
connect (output (5, 1, 4), input (7, 1, 4, "left"))
. morenodes (io ("Q", 8, 1, 4));
connect (io ("CK", 0, 1, 3), input (1, 1, 3 "left"))
. morenodes (input (3, 1, 3, "left"));
connect (io ("NQ", 8, 1, 3), output (7, 1, 3))
. morenodes (input (5, 1, 3, "right"));
connect (output (3, 1, 2), input (1, 1, 2, "right"));
connect (output (1, 1, 1), input (7, 1, 1, "left");

'
4

endcreate;

Fig. 4. Program for describing static D flip flop

59

)i
=S
=
172)

FLIPFLOP

1 1\@1 0 [E] LT]
B B &
EEE O mi—
Es: i
o =
] = 0 |-
] O] 0] (0] =

60

Fig. 5. High-level flip-flop description

Fig. 6. Mask level flip-flop description

n

—— [—
—_————
[—_

17

n

_

=

n

aal

Fig. 7. 16-bit self-checking comparator

—
[
I
I

61

